
FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [1] of [41]

Seventh FRAMEWORK PROGRAMME
FP7-ICT-2007-2 - ICT-2007-1.6

New Paradigms and Experimental Facilities

SPECIFIC TARGETED RESEARCH OR INNOVATION
PROJECT

Deliverable D3.1
“Detailed Experimental Plan and Scenarios”

Project acronym: ECODE
Project full title: Experimental Cognitive Distributed Engine
Proposal/Contract no.: 223936

Date of preparation of Deliverable: February 2nd, 2009

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [2] of [41]

Document properties
Document Number ICT-2007-1.6-223936-ECODE-D3.1
Document Title Detailed Experimental Plan and Scenarios

Document responsible Philippe Owezarski (CNRS)
Author(s)/editor(s) Konstantin Avratchenkov (INRIA), Chadi Barakat (INRIA),

Olivier Bonaventure (UCL), Benoit Donnet (UCL), Pierre
Dupont (UCL), Amir Krifa (INRIA), Yann Labit (CNRS), Imad
Lassoued (INRIA), Guy Leduc (ULG), Johan Mazel (CNRS),
Juan Pablo Narino Mendoza (UCL), Philippe Owezarski
(CNRS), Dimitri Papadimitriou (ALB), Damien Saucez (UCL),
Wouter Tavernier (IBBT), Ing-Jyh Tsang (ALB)

Dissemination level PU
Security Type PU
Status of the Document Ongoing
Version & Revision History Preliminary v1.0 - February 2009

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [3] of [41]

Table of Content

Table of Content ..3
1. Description of the Document ...4
2. Introduction ...5
3. Monitoring and Security...6

3.1. Adaptive Traffic Sampling ...6
3.2. Global/Active Monitoring ...9
3.3. Anomalies Detection ...12

4. Routing..14
4.1. BGP...14
4.2. Network Recovery and Resiliency...17

4.2.1. Use Case Scenario 1 17
4.2.2. Use Case Scenario 2 19
4.2.3. Use Case Scenario 3 20

5. Path Selection ...23
5.1. Informed Path Selection ..23

5.1.1. Use Case Scenario 1 23
5.1.2. Use Case Scenario 2 25

6. Accountability ..27
6.1. Profiling and Accountability ...27

7. Observation and Analysis Grid..34
8. Conclusion ..35
Annex.1: Template ..36
Annex.2: ILab-T Experimental Facility ...38
Annex.3: Experimental Tools...39
References ..41

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [4] of [41]

1. Description of the Document

This document is the ECODE deliverable D3.1, draft version-01. This deliverable is the result
of the first thoughts on how to assess and validate by means of experimental scenarios (to be
emulated on the IBBT ILab platform) the combination of machine learning with advanced
networking techniques as proposed in deliverable D2.1. This document is nevertheless subject
to periodic updates, as the ECODE project will be moving on.

As outlined is the Technical Annex B, the ECODE project comprises two experimental phases.
During the first experimental phase (from M03, Dec.2008 to M16, Mar.2010), the machine
learning and networking techniques are combined in the cognitive router system. During this
first experimental phase, the applicability, the validity and feasibility of introducing a cognitive
component/engine in the network node elements - referred to as cognitive routers - are
experimented using a number of demonstrative use cases. These use cases cover different
problem in representative areas, identified as Internet architectural and design challenges (such
as security, controllability, routing, and accountability).

All the use cases studied in the context of the ECODE project are validated and assessed by
means of one or several different experimental scenarios aiming at illustrating the benefits and
applicability of our proposals, especially in term of machine learning. For this purpose, use-case
driven experimentation will be performed on the cognitive engine elaborated in the context of
the WP2 and described in the deliverable D21 "Cognitive Engine - Experimental Network and
Architecture”.

Description of the experimental scenarios intends to answer a set of questions on (1) Technical
objectives, (2) Content, and (3) Description of the experimentation itself. The template used to
obtain this information is available in Annex 1. Each experiment description is structured around
the following elements:

• Detailed use case description, performance objectives, (technical and non-technical)
constraints, and description of the expected results;

• Description of the experimental evaluation criteria and metrics;
• Description of the experimental scenario description, setup, tools, and methodology;
• Experimental report(s) including iteration/feedback on described solution.

This first experimental phase will be conducted in physical experimental infrastructures, more
precisely, using the iLAB physical experimental facility, located at IBBT premises in Ghent,
Belgium (see Annex 2).

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [5] of [41]

2. Introduction

The focus of the ECODE experimental research project is to introduce a new Internet
architectural component realized by means of a cognitive system and that preserves the original
Internet design principles, including the end-to-end principle and its transparency, to sustain
growth of an Internet that remains inline with what it supposed to deliver to the end-user and
that performs in accordance to what it is expected to deliver to the end-user. As the purpose of
this new architectural component is to sustain growth of an Internet that performs in accordance
to what it is supposed to deliver to the end-user and performs according to these expectations
in order to satisfy the end-users, large-scale testing and validation is explicitly in the scope of
this research project. Combined experimentation will allow determining whether composing the
Internet high-level goals - societal, economical, etc. - can be translated into lower-level
objectives (in terms of functionality and performance) and constraints (both technical and non-
technical) and enforced via the newly introduced cognitive component as part of the Internet
routing system.

This first experimental phase will be conducted in physical experimental infrastructures, more
precisely, using an emulation facility. The cognitive engine will be experimented and its
performance evaluated by means of a dedicated and fully controlled emulation platform: the
iLAB experimental facility, located at IBBT premises. The objective is to set-up a realistic
environment able to reproduce as closely as possible, real network and operational conditions.
In such a realistic emulated environment, it will be possible to i) run the cognitive engine
designed in WP2 with the set of use cases, grouped into technical objectives, and ii) obtain
feedback from its validation and performance evaluation, for improving the cognitive engine
accordingly. At the end of this first experimental phase, the results will be reported back to WP2
so as to appropriately adapt the architecture outlined in the deliverable D21 "Cognitive Engine -
Experimental Network and Architecture”.

The components of the cognitive router and in particular the cognitive engine will be
experimented on the ILab cluster available at IBBT offices by means of representative use
cases. As for D2.1, description of the experimentation for the use cases is clustered into four
groups:

• Security and monitoring. This corresponds to use cases a1, a2, and a3, i.e., the
development of an autonomous system for network monitoring, traffic management, and
anomalies detection.

• Routing. This corresponds to use cases c1 and b2, i.e., the development of a solution for
speeding up the BGP path exploration process and allowing fast network recovery.

• Path selection. This corresponds to use case b1, i.e., the development of a solution for
allowing application (of any kind) to rank paths according to particular criteria.

• Profiling and Accountability. This corresponds to use case b3, i.e., the development of a
solution for correlating profiles with subscribers’ usage and their impact on the network
resources.

This deliverable describes the experimental scenarios, and tools that will be developed and/or
used to determine applicability of the proposed machine learning techniques. For each of these
use cases, we describe, in this deliverable, one or several experimental scenarios for assessing
and/or validating some or all the functional components of the cognitive router. Each description
comes with the metrics and evaluation criteria as well as the expected results so as to assist
evaluation of the obtained results. The template used to obtain this information is available in
Annex 1. This deliverable provides an analysis of the experimental tools that will be used in
each experiment and methodology that will be conducted for each experiment in order to
facilitate interpretation of the obtained results and enable systematic re-production of results.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [6] of [41]

3. Monitoring and Security
3.1. Adaptive Traffic Sampling

Use case scenario description
Title Adaptive Traffic Sampling and Management
Technical objective Our main technical objective (part of the Technical Objective 1) consists on

building a distributed adaptive traffic sampling platform which will try to
better reach the monitoring application requirements by optimally
configuring the sampling rate in monitors, while reducing the overhead on
routers and the volume of collected traffic. Our platform, as described on the
figure below, will include the following services:

− TrafficEmulatingService: since we have no access, for the moment,

to traffic monitoring points and traces in a real network, we are
implementing a service for traffic emulation. As input for
TrafficEmulatingService, we use a real TCPDump trace collected in
one or more points in a network which we re-assign to the edge
routers of the emulated topology. Note that we can select different
monitoring points among the emulated devices, for which we
associate the SamplingService we describe in the next point.

− SamplingService: based on the feedbacks received from the
DataAnalyzerService, the SamplingService will sample the network
traffic (real or emulated traffic) and send the sampled flow data to the
DataCollectionService.

− DataCollectionService: this service will just collect the received

sampled flow records from the different monitoring points.

− DataAnalyzerService: given a monitoring application, this service
will analyze the collected data, estimate the network status using
unsupervised machine learning techniques and use this estimation to
send feedback reports to the monitoring points in order to modify their
sampling rates to meet the measurement task requirements.

Note that only the SamplingService will be installed in the network routers

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [7] of [41]

chosen as monitoring points, while the DataCollectionService and the
DataAnalyzerService will be installed in the controller node.

In our platform, we intend to use unsupervised machine learning techniques
within the DataAnalyzerService in order to estimate the network status
based on the collected data records. We will focus on techniques like the
maximum likelihood, the Kalman filtering and the Expectation Maximization
(EM) method. The performance improvement which we are expecting by the
use of those ML methods will be expressed in terms of a better estimation of
network status and hence a better setting of sampling rates that improves
monitoring accuracy and reduces the overhead on routers.

Participant(s) This scenario will be performed by INRIA with a possible collaboration with
LAAS/CNRS and ULANC.

Content
Short description The purpose is to optimally configure the sampling rate in monitors so as to

reach the best measurement accuracy at limited overhead. The information
on flows will then be used to manage them appropriately inside routers.

Expected results Our system is intended to provide an estimation of network and traffic
status. This estimation is afterwards used to find a better configuration of
monitors and controllers that reduces measurements errors and improve the
management of flows inside routers. For instance, our platform can optimize
the monitoring to carry out the following measurements:
− the number of packets sent by a given AS
− the greediest users
− the number of packets per flow
− the detection of anomalies.

Our methodology is based on Machine Learning methods (the maximum
likelihood, the Kalman filtering and the Expectation Maximization method) in
order to improve the network status estimation accuracy. So, based on this
estimation, an end user will be able to run efficiently some monitoring
application.

Experimentation
Evaluation criteria and
metrics

The experimental evaluation metrics are the following:
- the network status estimation accuracy
- the traffic collection overhead.

In addition, the convergence time of the estimation and the computation
time are also two important parameters that will be used as metric.

Experimental scenario:
description, tools,
configuration and
running conditions

Experimental scenario description:

Since we have no access to different live monitoring points in a real
network, and as a first step, we intend to use the emulation platform we are
developing (consisting on the TrafficEmulatingService which we already
described) in order to replay TCPDump traces at a packet-level.

The topology of the emulated scenario will be the following:
− A transit network, where we intend to deploy a set of nodes, among

which we will choose the monitoring points (one option is to enable all
routers with monitoring capability).

− To this transit network we will connect a set of AS(s).

The interconnection scheme and link characteristics will depend on the

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [8] of [41]

TCPDump traces that we will replay in our emulation platform.

Experimental tools:

The following is the list of the Open Source tools we intend to use and
modify in order to reach our technical and experimental objectives:

− Softflowd: a flow based network traffic analyzer capable of Cisco

NetFlow data export. Softflowd semi-state fully tracks traffic flows
recorded by listening on a network interface or by reading a packet
capture file. These flows may be reported via NetFlow to a collecting
host. Note that Softflowd does not include support for traffic sampling
and we are designing our SamplingService in such a way that it will
include the Softflowd tool around which we will build other modules.

− Flowd: a secure NetFlow collector. It offers the following features:

- Understanding NetFlow protocol v.1, v.5, v.7 and v.9 (including
Ipv6 flows).

- Supports both Ipv4 and Ipv6 transport of flows.
- Supports filtering and tagging of flows, using a packet filter-like

syntax.
- Stores recorded flow data in a compact binary format.

Flowd works with any standard NetFlow exporter, including hardware
devices or software tracking agents, such as Softflowd. Note that
Flowd does not include support for performing data analysis and as we
have done for Softflowd, we are designing the DataAnalyzerService in
such a way that it will include Flowd around which we build other
modules. Also, these modules will enable as to support different
monitoring applications.

The selected experimental tools (Softflowd and Flowd) need to be extended
in order to reach our technical objectives and to run our experimental
scenario. In particular, they should be extended to perform sampling, to
learn about network status and to reconfigure the sampling rate in monitors.

Experimental configuration and running conditions:

For now, we are using different TCPDump traces at a packet-level (including
traces from the traffic data repository at the WIDE project), which we will
replay using our TrafficEmulatingService.

Discussions are currently going on with GEANT to obtain real NetFlow and
TCPDump data from the entire GEANT backbone.

Experimental execution and measurements:

As a first step, we will connect the passive measurement tools to the
nodes/routers we will choose as monitoring point within our emulation
platform. Those tools will sample the traffic in emulated routers and send
sampled flow records to a central collector that will analyze them, estimate
network status, evaluate accuracy then reconfigure monitors. Afterwards,
we will be able to run the tools we are developing and enhancing on real
network nodes (for example nodes within the ILAB-T platform).

Methodology Methodology to obtain experimental data:

As a beginning we are working on the emulation of real network traffic
starting from a packet-level trace collected on one ore more points inside
the network. These TCPDump traces need to be transformed as explained

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [9] of [41]

later. In parallel we are working on the collection of network-wide traces that
can be used as they are without the following transformation.

Experimental data processing methodology and analysis:

The methodology to process the experimental TCPDump packet-level
traces data could be summarized in the following steps:
− Selection of the transit network topology.
− Choosing the number of AS(s) to inter-connect to the transit network

and their characteristics (IP(s) range…).
− Re-assignment of the initial TCPDump traces to the different AS(s)

based on their characteristics.
− Choosing the monitoring points among the transit network nodes and

connecting the SamplingService to each one of them.
− Running the emulation (the TrafficEmulatingService) and consequently

the related services (SamplingService, DataCollectionServices and
DataAnalyzerService).

− Using the DataAnalyzerService to perform some monitoring application
(The number of packets sent by a given AS, the greediest users, the
number of packets per flow, and detection of anomalies) based on the
collected data records.

3.2. Global/Active Monitoring

Use case scenario description
Title Validation of the global monitoring system
Technical objective Technical Objective 1. This objective relates to the improvement of the

manageability and diagnosability of the Internet.
Participant(s) This scenario will be performed by LAAS/CNRS with a possible

collaboration with UCL, and INRIA.

Content
Short description We want to setup an emulation network, generate traffic and verify that our

monitoring system is reliable, i.e., it captures and reports every packet
correctly.

Expected results The expected outcome of this setup is to build a reliable and distributed
passive monitoring system (i.e. no packet loss, accurate timestamping) that
provides for accurate and fast software-based monitoring and measurement
capability.

Experimentation
Evaluation criteria and
metrics

For the monitoring entity, the two main criteria to enforce are: packet loss
(i.e. packets that are not captured) and accurate timestamps for each
captured packet. The two metrics we will use are: the percentage of
captured packets over the total number of packets and the error on values
of timestamps.

For the reporting mechanisms several other criteria and metrics will be
evaluated. The criteria for the reporting mechanism must be as fast as
possible (without loss) and as transparent as possible. The metrics are

− Loss rate of reporting packets

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [10] of [41]

− Delays in reporting (delay between reception of reporting message
on one host and the production of the measurement data)

− Throughput of reporting traffic (more precisely a statistical description
of the reporting traffic generation process: inter-packet times
distribution, packet size distribution).

Experimental scenario:
description, tools,
configuration and
running conditions

Experimental scenario description:

Validating a monitoring system is quite impossible without another trustable
monitoring system. The principle of this validation then relies on the use of a
DAG system for validating our software global monitoring and measurement
system.

Practically speaking, our experimental scenario consists of two steps. These
steps are required for validating the performance of a single monitoring
entity (step 1) and for validating the global reporting mechanism between
entities of the global monitoring system (step 2). For this purpose, we will
have to:
1. Test the monitoring tool on one host (to assess the reliability of the

capture and timestamping mechanisms).
2. Test the monitoring tool on several hosts (to assess the reliability and

the performance of the reporting/communication system and the
timestamps).

Experimental tools:

The DAG system has been previously validated during the last decade and
proved to be very fast in capturing packets (and then avoiding capture loss
when the hosting machine is well provisioned) with a very accurate GPS
based timestamping mechanisms. CNRS owns several of these DAG
systems on its experimental platform.

They will then be used to evaluate the performance of accuracy of the global
software monitoring system specifically designed and developed for ECODE
and that will be then deployed on the ILab experimental facility cluster.

Experimental configuration and running conditions:

1. For the first step of validation, the following topology will be used.

For the global reporting mechanism, a larger network is necessary. The
topologies depicted on the figure will be used.

We are limited by the number of available DAG systems. Hence, we won’t
be able to make a perfect evaluation with a larger number of machines.
Nevertheless, we will evaluate delay and loss rate for larger scenarios. But
in this case we will not be able to evaluate accurately the reporting packet
generation process, because of the lack of DAG system (we only own 3 of
them). Link characteristics will be the ones classically observed on actual
networks. The delay distribution can be something very simple as a classical
exponential function or any sub-exponential functions generally observed in
the Internet path delays as Weibull or Pareto distributions. We will apply a
similar method for creating losses.

2. For the second step of validation, the following topology will be used.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [11] of [41]

The Operating system running on host is a Linux distribution. The Tool to
replay traces is either TCP Replay, or a tool specifically developed by
ourselves.

In both cases (1 and 2), we need to generate realistic traffic. For this
purpose, we will either replay previously captured traces or generate traffic
based on a realistic traffic model (as the Gamma-Farima one that was
developed in the framework of the French MetroSec project by ENS Lyon
and LAAS-CNRS).

Experimental execution and measurements:

1. For evaluating a single monitoring entity we need to use a DAG system

on the same link, close from the monitoring entity to be evaluated.

2. For evaluating the global reporting with the depicted topology, we need 3

DAG systems. For larger topologies, we will reduce our ambitions in
evaluating the generation process of reporting traffic. It will nevertheless
be quite instructive for evaluating all other metrics aiming at evaluating
the performance criteria.

Methodology Methodology to obtain experimental data:

Most of data will be provided by DAG systems.

Experimental data processing methodology and analysis:

We will then develop all necessary tools for analyzing them. These tool will
have to:

1. Compare the traces captured by a software monitoring entity and the

ones captured by DAG systems. It will consist in checking that all
packets are reported, and compute difference between related
timestamps.

2. Compute loss rate, delays, and provide characteristic of the generation

process for the reporting traffic.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [12] of [41]

3.3. Anomalies Detection

Use case scenario description
Title Evaluation of the cooperative distributed Anomaly Detection System (ADS)
Technical objective Technical Objective 1. This objective relates to the development of a

distributed intrusion detection system to improve Internet security. By the
proposed technique, we expect to improve the performance in terms of false
negative and false positive rates

Participant(s) This scenario will be performed by LAAS/CNRS with a possible
collaboration with ULANC.

Content
Short description The objective is to evaluate the two proposed contribution families to the

improvements of the Anomaly Detection System (ADS). The latter uses ML
techniques in order to improve the false alarm ratio traditionally encountered
when using ADS in the actual Internet. Here, the objective is thus twofold:
1. Evaluate if the local Machine Learning (ML) techniques aiming at better

characterizing the traffic provide more accuracy and efficiency in
decision making;

2. Evaluate if the collaboration mechanisms between distributed ADS
entities can help improving the accuracy of the decision making process.

Expected results We expect to find lower false alarm ratios. We also expect to differentiate
the improvement due to local ML techniques which are used for
continuously learning about the traffic characteristics, and then finding more
accurately any anomaly, from the ones due to collaboration mechanisms
between distributed ADS entities. In this later case, the collaboration and ML
techniques aim at learning about the network status and traffic
characteristics in a distributed way and making decision from a global view
of the network and its traffic.

The continuous online analysis of the traffic made by each ADS entity, and
the distributed reporting of this information to all other entities should make
possible to learn more efficiently and accurately from the network traffic and
make more accurate decisions.

Experimentation
Evaluation criteria and
metrics

The performance of the ADS will be evaluated on the false negative and
false positive rates.

The false positive rate is the ratio between the number of undetected
attacks over the total number of attacks. The false positive rate is the ratio
between the number of false alarms over the total number of attacks.

Experimental scenario:
description, tools,
configuration and
running conditions

Experimental scenario description:

To be detailed.

Experimental tools:

There is no need for a dedicated measurement system to evaluate the ADS.
However, we need to develop a tool for injecting replayed traces in the
emulation network.

The other tools, as the topology generators, are supposed to exist but as the

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [13] of [41]

emulated scenario will remain small and such tool might be useless. It would
be useful only if the emulated scenario is large enough to force us to respect
some of the actual characteristics of current real networks.

Experimental configuration and running conditions:

Several topology configurations will be necessary. The first one will only
consist of a single machine running the local ADS, and a machine for
injecting the traffic on the link the local ADS is monitoring.

For evaluating the global ADS and its collaboration techniques, several
network topologies with different numbers of machines and different
interconnection topology will be necessary. We will start from 2 machines
running local ADS and collaborating to a much large number. We will try to
make this number as large as possible. Reaching a total of 5 machines for
hosting the ADS entities (which does not mean anything on the number of
traffic generators that will be necessary in the experiment – it depends on
the interconnection topology we would like to experiment). Link
characteristics will be the ones classically observed on actual networks,
except that we will not introduce any loss as they are already represented in
the replayed traces when a packet is lacking. The delay distribution can be
something very simple as a classical exponential function or any sub-
exponential functions generally observed in the Internet path delays as
Weibull or Pareto distributions.

This is important in such scenario to be able to evaluate the ADS based on
documented traces, i.e. traces for which we know at what moment, and for
what duration there are anomalies in the traffic, what kind of anomaly, their
characteristics (as intensity for example, number of sources or destination,
source and destination addresses, source and destination ports, etc.).

Experimental execution and measurements:

The ADS has to be evaluated with normal traffic without anomalies, and with
anomalous traffic. The anomalies in this traffic can be legitimate as flash
crowds or alpha flows, but also illegitimate as DoS attacks, scanning,
failures, misconfigurations, etc. Among the DoS attacks or scanning
strategies, it would be requested to experiment as many different kinds of
attacks as possible (all kinds of flooding, smurf, etc.). Such traces exist and
are the property of CNRS. They were issued in the framework of the French
MetroSec project.

A measurement and monitoring system is the basis for the machine learning
algorithms used in the local and global ADS). The evaluation relies on
calculating the false negative and false positive rate based the ADS alarms
raised when analyzing the traffic of replayed documented anomalous traces.

Methodology Methodology to obtain experimental data:

The experimental data produced by the ADS under evaluation are log files
of alarms raised by the local and global ADS.

Experimental data processing methodology and analysis:

The obtained log files will be compared with the list, time, duration and
characteristics of anomalies contained in the replayed traces. The number
of false alarms and undetected attack is then obvious to compute.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [14] of [41]

4. Routing
4.1. BGP

Use case scenario description
Title Using ML techniques for reducing path exploration in BGP
Technical objective As part of the Technical Objective T03 (see Technical Annex), the purpose is

the improvement of BGP convergence time by means of the detection of path
exploration event(s) and, if possible, accelerate the whole process to skip
selection process directly to the actual AS_Path that will be used.

Participant(s) Olivier Bonaventure (UCL), Benoit Donnet (UCL), Juan Pablo Narino Mendoza
(UCL), Pierre Dupont (UCL), Damien Saucez (UCL), Dimitri Papadimitriou
(ALB)

Content
Short description We want to be able to detect path exploration process in BGP and, if possible,

accelerate this process (i.e., avoiding the exchange of useless BGP UPDATE
messages between routers). The aim is to eliminate detrimental effects of path
exploration on BGP convergence time.

For this purpose, after detection of a path exploration event, a router could
decide to directly select the actual (and correct) AS_Path that will be used for a
given destination prefix and subsequently advertised to its downstream peers.
A desired side effect of this acceleration would be to reduce the BGP churns
generated during the path exploration process.

Expected results The first step consists in detecting path exploration process (or at least a
certain proportion of them) when they occur by identifying the characteristics of
this process from received BGP UPDATE message sequences (patterns). In
the next step, we would like to determine the right path to use before the end of
the exploration period in order to stop the process and directly select the right
path. The final step is to predict when an exploration process would occur and
compute the correct path by limit the path exploration at its maximum (no
exploration at all would be the best).

For the first step, we would obtain a tool determining "for the traffic you provide
me, n exploration processes have been found and here they are". For the
second step, the tool should alert before the end of the detected exploration
process, which are the right AS_Path to use. Finally, the tool should predict
when path exploration would occur, anticipate the decision of the BGP route
selection process, and its subsequent advertisement of the selected AS_Path
to downstream peers.

Experimentation

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [15] of [41]

Evaluation criteria and
metrics

The following metrics will be used:
1. Number of actual path exploration process detected. Note that we might

encounter false positives (i.e., a sequence of events is labeled as path
exploration while it is not the case) and false negatives (i.e., a sequence
of events is ignored while it should have been labeled as path
exploration).

2. The time required for the detection of path exploration event. For
instance, after how many events the sequence is labeled as path
exploration.

3. The correctness of the selected path. This is a Boolean value (the
selected AS_path is correct or not).

4. The proportion of correctness of selected AS_paths.
5. The probability of selecting a wrong AS_path and the impact of selecting

a wrong AS_path. The impact of selecting the wrong AS_path is the
deviation of the wrongly selected AS path from the AS_path that would be
selected after convergence (i.e. after full path exploration phase). From
this deviation an estimate can be achieved on the number of AS's that will
be affected by that decision.

Experimental scenario:
description, tools,
configuration and
running conditions

Experimental scenario description:

We will consider inter-domain topologies of various sizes i.e. comprising
various number of Autonomous Systems (AS), and various meshedness
among AS but comprising at least one 3-cycle in the AS-graph (larger cycles
result in longer path exploration event).

Using these topologies, inter-domain link can fail and be started on demand to
force a BGP re-convergence.

Experimental tools:

As a first step, our experimentation will be done through simulations so that we
keep a complete control on the whole configuration and execution process. We
are currently evaluating two simulators Simula BGP and SimBGP.

i) Simula BGP: the Simula BGP tool is designed to experiment the dynamics
and propagation of routing updates in large AS-Graph where each router has
Adj_RIB_IN, Loc_RIB, Adj_RIB_OUTs table. However, the Simula BGP tool
considers only inter-domain routing information exchanges and inter-AS
topologies (each AS is an atomic node). The main advantage of this simulator
is that it comes with a large number of inter-domain topologies.

ii) SimBGP: this simulator (http://www.bgpvista.com/simbgp.php) older but it
has been used to perform the simulations described in several scientific
papers. Its main advantage is that it contains a more detailed BGP model than
SimulaBGP since it supports Route Reflectors and internal BGP (iBGP) i.e.
intra-AS BGP connections. However, its scalability properties are still under
investigation.

If the topologies provided by Simula BGP and the inferred topologies available
on the Internet are not sufficient, we will generate additional topologies by
using a topology generation such as IGen. This topology generation software
uses network design heuristics such as MENTOR, MENTour, Delaunay
triangulation and Two Trees for the purpose of building network topologies. For
more details, see http://www.info.ucl.ac.be/~bqu/igen/.

Experimental configuration and running conditions:

For simulations, we will make use of “simple” topologies and detect, off line (so
after the execution of the simulations), path exploration traces. Then, those

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [16] of [41]

traces will be post-processed and we will check whether the ML techniques
can be used.

Configuration 1: simulations using BGP simulators executed with one router
per AS/external BGP (eBGP). This is the base and most simple case that will
allow us to evaluate the suitability of different machine learning techniques for
the BGP path exploration problem.

Configuration 2: we will expand the AS-level inter-domain topologies by
adding internal BGP (iBGP) and multiple links between AS's. Then, we will add
Route Reflectors. We will first evaluate whether the successful ML techniques
found in configuration 1 are still successful with configuration 2. If this is the
case, we will expand the topologies to evaluate the limits of the ML techniques.
Otherwise, we will consider other ML techniques.

Configuration 3: assuming all steps are passed successfully, small topologies
extracted from configurations 1 and 2 will be then executed over a real BGP
implementation (XORP or Quagga) in ILab-T environment.

Experimental execution and measurements:

The simulations will be conducted on servers. The emulation experiments will
be conducted in the ILab-T environment.

Methodology Methodology to obtain experimental data:

The incremental methodology will include the following steps:

Step 1: simulations using BGP simulators. This step is decomposed as
follows: Step 1a will be executed with one router per AS/external BGP (eBGP).
Step 1b will consider at least two routers per AS/internal BGP (iBGP) and
Route Reflector. The goal is to obtain early results so as to determine whether
path exploration can be observed or not from the BGP monitoring/trace logs
obtained by executing simulation(s).

Step 2: same as the previous steps but using more complex topologies as
those generated by IGen.

Step 3: emulation using XORP (or Quagga). Assuming all steps are passed
successfully. This step requires further evaluation resulting from the relative
complexity of modifying and/or extending BGP modules to support the
selected ML technique.

Experimental data processing methodology and analysis:

During the simulation phases, the incremental methodology described here
above makes use of “simple” topologies so as to detect off line (so after the
simulations), path exploration traces. Then, the obtained traces will be post-
processed and we will check whether Machine Learning (ML) techniques can
be used.

With respect to machine learning investigations: the incremental approach
consists in determining applicability and if this is actually the case
progressively automate processing (detection) first off-line and then on-line of
path exploration sequences (from the BGP update message sequences):

− Steps 1 and 2 intend primarily to determine if ML is applicable to the BGP

path exploration case and initial trial of ML.

− Step 3 targets application of on-line machine learning.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [17] of [41]

4.2. Network Recovery and Resiliency
4.2.1. Use Case Scenario 1

Use case scenario description
Title OSPF event modeling and clustering
Technical objective The objective is to model (historical) message sequence behavior of Open

Shortest-Path First (OSPF) networks in order to be able to obtain faster
failure detection and faster failure correlation.

Machine learning coupled with the use of appropriate heuristics is expected
to deliver faster reactivity to certain network events based on historical
behavior. Such behavior is currently not taken into account to accelerate
trigger of shortest-path tree computation.

Participant(s) This scenario will be performed by IBBT and ALB. Additional collaboration
will be possible in the course of execution of this experiment.

Content
Short description We want to evaluate how statistical machine-learning techniques are able to

model typical protocol dynamics and capture correlations related to Shared
Risk Groups and Multi-Access network failures in terms of typical message
sequences and message arrival time distributions.

Expected results By adding functionality to the ECODE cognitive engine, such as to store and
model historical information using intelligent structures, we expect that
several events, such as correlated failures and atypical network events
(failures) can be detected significantly earlier than is currently the case.

Current OSPF link-state protocol logic does not take into account the
operational and historical environment in which it is running.

Experimentation
Evaluation criteria and
metrics

The evaluation criteria will be the following:
- Failure detection time
- Switch-over time
- Resulting packet loss

Experimental scenario:
description, tools,
configuration and
running conditions

Experimental scenario description:

The experimental scenario is divided into two phases:

1. In a first phase, OSPF protocol message traces will be recorded for a set
of network topologies representative for the different range of events that
can happen in operational networks. Both normal protocol dynamics and
dynamics on failure events will be generated in an emulated network using
XORP and Click-based Bidirectional Forwarding Detection (BFD). For this
purpose, a range of failures will be generated simulating single link failures,
node failures, Shared Risk Groups (SRG), Multi-Access network failures,
etc. Based on these traces, offline learning (probably in a home made
simulation platform or using ns2) will allow learning methods to model
messages arrival distributions, and message sequence distributions.
Feedback in order to allow the ML algorithm to learn can be given once
failures are either detected via existing protocol mechanics (HelloInterval
expiration) or when resulting Link State (LS) Update message sequences
are compared to predicted ones (delayed feedback).

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [18] of [41]

2. In a second phase, once offline learning results are satisfactory, available
methods will be adapted and will be tried in an online setting using XORP.

Experimental tools:

The tools that will be used for this experiment are routing emulation using
XORP and Click-based Bidirectional Forwarding Detection (BFD).

Tools such as TCPDump or Wireshark will be used to capture experimental
data. Data analysis will be performed using either custom made modules or
XORP/Click-based software. Probably, machine-learning libraries will be
used to quick start the analysis.

Experimental configuration and running conditions:

Experimentation will be executed on emulated network topologies
comprising in the range of 10-80 nodes, and having a number of multi-
access networks with sufficient routers connected to them.

Background data traffic is of less importance because OSPF protocol
messages are prioritized. Hence, processing of OSPF protocol messages,
in particular, LS PDUs messaging is not impacted by data traffic - at least in
the limit of the experimental variables under control in these experiments -.

Experimental execution and measurements:

Trace capturing tools such as TCPDump are available and will be used for
this experiment.

The XORP routing engine will probably need to be adapted in order to allow
communication of received PDUs and related timing information to the
cognitive engine. The cognitive engine will be extended such as to learn on
the provided data. And an interface towards the XORP routing engine will
need to be provided so as to trigger rerouting based on a prediction.

Measurement tools will be made available in every network node such as to
measure specific characteristics of arrived LS PDUs such as Inter-Arrival
Time (IAT), LS PDU field values, etc.

Methodology Methodology to obtain experimental data:

A four-step methodology as detailed here below will be used. This process
will be iterated until the results are satisfactory, experimenting with different
sets of observed parameters.
1. Before-failure protocol dynamics will be modeled using a set of

parameters either explicitly available in LS PDU such as the sequence
number, the Link-State ID, the Link-State Age or measured such as the
Inter-Arrival Time between LS PDU

2. Upon failure, differences in the value of the observed parameters are
detected and modeled

3. The “distance” as measured between step 1 and 2, will serve as
guideline for predicting future failures

4. A feedback/learning phase is reconciling the prediction with the actual
event, being non-failure as in step 1 or failure as in step 2

Experimental data processing methodology and analysis:

The OSPF (or BFD) protocol engine will be used as the main source of
experimental data that will be processed and analyzed. Tools such as
TCPDump or Wireshark will capture these data. Data analysis will be

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [19] of [41]

performed in either custom made simulation modules or XORP/Click-based
software. Probably, machine-learning libraries will be used to quickstart the
analysis.

4.2.2. Use Case Scenario 2

Use case scenario description
Title OSPF cycle detection and prediction
Technical objective The objective is to experiment techniques to detect transient loops in the

routing topology from a local router perspective. Transient routing loops can
occur during transient re-convergence phases, resulting in packet losses.

Participant(s) This scenario will be performed by IBBT and ALB. Additional collaboration will
be possible in the course of execution of this experiment.

Content
Short description We plan to capture different types of information about active traffic streams

using the ECODE monitoring engine in a node. This information will be used
to detect the occurrence of cyclic patterns in data traffic. When a cycle is
detected, it will be signaled to the Routing/forwarding Engine such as to
rapidly take action to break the cycle.

Expected results Early topology cycle detection will quickly detect loops during the transient
phase of network re-convergence. As such, the resulting packet loss and the
increased network load during these phases will be significantly lesser
compared to the current situation where no cycle detection is applied.

Experimentation
Evaluation criteria and
metrics

The criteria to evaluate the solution existing solutions will be the following:
− packet-loss of affected traffic streams
− delay of affected traffic streams

Experimental scenario:
description, tools,
configuration and
running conditions

Experimental scenario description:

A learning component will be trained to detect cycles on a range of
representative topologies with topological cycles of increasing size. The
cognitive engine of the detecting (local) node will have a set of measured
parameters at its disposal such as packet size, source, destination, and TTL.

In a training phase a selection of packets being forwarded can be stored
locally. This information can then be used as exact feedback to reinforce the
learning process to know if there was a cycle or not. The learning will mainly
consist of detecting a set of parameters and patterns of these parameters (for
example based on time and sequences) representative enough to be able to
quickly detect cycles.

In an operational environment, the component will be activated upon arrival of
an LS Update message, which triggers shortest-path tree re-computation.
The goal is thus to have a fast cycle detection tool to prevent selection of
routes crossing these cycles - even temporarily -.

Experimental tools:

Additional development will be probably needed in the cognitive component
that will be coupled to the XORP routing engine (such that it can feed the
routing engine/process of XORP, especially for learning the right sampling

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [20] of [41]

interval and set of parameters.

Experimental configuration and running conditions:

To perform these experiments, a set of network topologies with cycles of
increasing size, and number of nodes between 1-50 will be used. Data traffic
will be generated, using:

1. In a first phase, standard traffic generator tools (IPerf, D-ITG, etc.)
2. In a second phase, real traces will be used

Experimental execution and measurements:

Traffic monitoring functionality will be needed in every node as part of the
Monitoring Engine (see Deliverable D2.1, "Cognitive Engine - Experimental
Network and System Architecture”) such that passive measurements can be
taken on a learned sampling interval and on a learned set of parameters.

Methodology Methodology to obtain experimental data:

The following methodology will be used to obtain experimental data:
1. Learn in isolated environments

− Use topology x from a set of topologies with possible cycle size y
− Generate traffic in the given topology
− Introduce cycles at scheduled random times
− Let the component learn, and iterate the process with different

topologies and different cycle sizes until the detection time is fast
enough

2. Learn during re-convergence
− Re-execute the above process only during re-convergence of the

OSPF process

Experimental data processing methodology and analysis:

Experimental data processing will be performed using monitoring tools
developed for the monitoring Engine.

4.2.3. Use Case Scenario 3

Use case scenario description
Title Minimizing packet loss during routing table switch-over
Technical objective The goal of this experiment is to develop and evaluate a technique that

optimizes the routing table update process while taking traffic volume into
account during switch over events. Switching over high traffic volumes
timely should result into lower packet loss during the switch over event
responding on failures.

Participant(s) This scenario will be performed by IBBT and ALB. Additional collaboration
will be possible in the course of execution of this experiment.

Content
Short description This scenario will experiment with a traffic volume-based routing update

process. Traffic will be monitored using techniques to minimize resource
consumption, resulting data will be classified using ML techniques in
ordered classes of traffic, and an efficient mechanism to determine the best
update blocks and parameters will be evaluated.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [21] of [41]

Expected results We expect to find a significant decrease in packet loss during switch-over
events. The routing table update process is currently performed randomly
independent of the traffic volumes or based on off-line / pre-configured
prefix prioritization.

Experimentation
Evaluation criteria and
metrics

The main evaluation criteria will be packet loss during switch over.

Experimental scenario:
description, tools,
configuration and
running conditions

Experimental scenario description:

The experimental scenario will consist of three parts:
1. Evaluating/optimizing the adaptive monitoring mechanism: this

part will consist in training the component such as to find the ideal
monitoring interval. For this purpose, the component will be presented
in a first phase traffic generated from standard traffic generators (iperf,
D-ITG, etc.), and in a second phase the component will have to learn
on captured traffic from operational networks.

2. Evaluating the approximate sorting or traffic stream classification
mechanism: this part will evaluate several classification mechanisms
such as to make an ordered set of traffic streams in terms of volume.
The goal is to have the classification as fast as possible, experimenting
with fewer classes, or approximate sorting algorithms.

3. Evaluating the online quantum interval optimization: this last part
will involve using the given ordering or classification to find an optimal
quantum interval. Probably this will be possible using a heuristic.
However it should be tested and compared to random, constant and
other online learned values with given input.

Experimental tools:

For traffic monitoring purposes a Click Router component will be developed.
Evaluating different prefix-classification or prefix-ordering algorithms will
require additional development in the cognitive engine. The router update
process (quantum optimization) will in a first phase be modeled in
simulation. If the simulation proves to be valuable, it will be implemented in
XORP in a second phase.

Development will need to happen in the Monitoring Engine (Click) and in the
routing process of XORP.

Experimental configuration and running conditions:

Traffic monitoring functionality will be needed in every node in the
Monitoring Engine (see ECODE architecture) such that passive
measurements can be taken on a learned sampling interval and on a
learned set of parameters.

Methodology Methodology to obtain experimental data:

A different methodology will be used for each part described in the scenario
section:

The methodology for adaptive monitoring (sub-case 1) will consist of
gradually increasing the set of traffic streams presented to the monitoring
component: both in terms of complexity and size. A traffic matrix will be
generated for a set of networks, varying from well-meshed to poorly
meshed. Experiments will run on a traffic matrix having different types of
flows between the nodes: varying from uniform to strongly directed, from

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [22] of [41]

very well spread in time to very bursty, flows having increasing to
decreasing volumes (using Linux-based traffic generators such as IPerf, D-
ITG, and others). The node on which the sampling will happen will be placed
at several locations in the network such as to present several types of traffic.
In a second stage, traffic traces from a realistic network will be sent through
the learning node (e.g., traces from the GEANT network). The changing rate
of the ordering or classification of the volume of different traffic streams
(next sub-case) will be used as a feedback such as to decide to monitor
more or less frequently.

For evaluating the classification or ordering component (sub-case 2),
random sets of prefixes and associated numbers will be generated such as
to provide the classification / ordering mechanism with data. Feedback will
be provided by existing sorting algorithms.

Optimizing the quantum interval (sub-case 3) will receive as input several
classes of prefixes, having different sizes, and being either strongly or
loosely ordered (depending on the output of sub-case 2). In a first phase, a
fixed model of the quantum optimization process in simulation will be used
to experiment with different quantum optimization strategies. In a second
phase, the model can be implemented in emulation. The experiment will
evaluate strategies using a fixed quantum (as is) and those with a variable
quantum. The end-performance will be compared with random prefix
ordering and fixed quantum interval.

Experimental data processing methodology and analysis:

The data analysis tools will mainly consist of custom made tools in Click to
report on seen traffic patterns and trends. Reports (to be developed) will be
generated from the router engine to be able to track why a certain choice of
quantum interval and associated traffic streams was chosen.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [23] of [41]

5. Path Selection
5.1. Informed Path Selection
5.1.1. Use Case Scenario 1

Use Case Description
Title Intelligent path ranking using IDIPS
Technical objective Technical objective T02. Active measurements are used to feed the

Knowledge Base and also used by Cost Functions for ranking paths.
Participant(s) Damien Saucez (UCL), Juan Pablo Narino Mendoza (UCL), Benoit Donnet

(UCL), Olivier Bonaventure (UCL), Pierre Dupont (UCL), Guy Leduc (ULG).

Content
Short description The idea of the use case is to improve ISP-Driven Informed Path Selection

(IDIPS) with machine learning techniques. IDIPS is a server that can be
contacted by any host (applications or network stack) for ranking paths based
on particular requirements, such as minimizing the delay or maximizing the
bandwidth.

For performing this ranking, the IDIPS server is supposed to collect path
performance information, such as delay, jitter, packet loss rate, capacity/
available bandwidth or TCP throughput. Possibly, we can also imagine to
determine path diversity using IDIPS. This data collection, as being made
through active probing measurements, is network intrusive, especially when
performed at a large-scale. In this use case, our objective is to see whether
those path performance information can be predicted using machine learning
techniques. At this point of the project, we believe that this is a time series
problem.

Thus, the goal is to reduce the impact of IDIPS on the network by avoiding
sending multiple probes. In particular, bandwidth estimation is known to be
very intrusive as it requires a lot of probes.

Expected results We expect to observe a correct estimation of the path performance (we still
have to define the word “correct”). The accuracy of the estimation will be
evaluated during our experimentation (see the Experimentation sub-section).

We also would like to characterize the metrics dynamic. From one hand, the
metrics are time dependant and we want to determine how long a given
prediction can be valid. On the other hand, some metrics would depend on
the metric ends. For example, if the limiting factor for the metric is shared by
all the destinations (e.g., the local uplink is the bottleneck), the metric will
look independent of the destination. Otherwise, a correlation between the
metric and the destination will exist.

Experimentation

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [24] of [41]

Evaluation criteria and
metrics

The following evaluation metrics will be considered:
− accuracy of the prediction, i.e., how far is the prediction from
− actual value of a given path performance information
− computation cost of the prediction
− time period during which the prediction can be considered as valid
− probing savings, i.e., the amount of probes we avoid to inject in the

network thanks to machine learning predictions.
Experimental scenario:
description, tools,
configuration and
running conditions

Experimental scenario description:

Off-line experimental scenarios based on collected data sets, some of them
are publicly available while others still have to be built by our own.

Experimental tools:

An IDIPS server software release is already available but does not include
any measurement tool or ML engine. Only the protocol stack is implemented
and an interface to easily plug path ranking components. IDIPS is already
interfaced with LISP (Locator/Idendifier Separation Protocol) [INM08] and
would probably be interfaced with a P2P system in the next future.

In order to influence the path performance on the testbeds, Dummynet and/or
Click will be used. Metrics like delay, capacity/available bandwidth, packet
loss ratio and others can be controlled with such tools.

Traffic generator will be used on the testbed to generate traffic in a controlled
way and thus validate the IDIPS components.

Experimental configuration and running conditions:

Experimentations will be in three steps.

Step 1: The machine learning engine will be tested off line based on datasets
(Off Line Validation). Some dataset will be homemade while others will come
from well-known public datasets like RIPE and Routeviews. The homemade
datasets will be passive (e.g., NetFlow, TCPdump) or active and will be
collected by the partners. The need of homemade datasets comes from the
fact that there are no public traces available that gives, at the same time and
the same place, information about all the metrics we need.

Step 2 (Emulation validation): Validation of experimentations will rely on
emulation based on traffic model extracted from the state of the art of
network traffic modeling and the datasets. This step allows to validate IDIPS
in a totally controlled environment. The emulation testbed will begin small
with a few dozen nodes and progressively increase as much as the IBBT
environment allows it.

Step 3 (Internet validation): IDIPS will be validated on the Internet as a final
step. We still have to define how the testbed will be setup, e.g., IDIPS in a
P2P or a web server. Like for emulation, the testbed will start with a few
nodes and progressively increases in size. The size is still to be defined.

Experimental execution and measurements:

These experimental scenarios might be seen as “replays”. Using the
previously collected data, we will inject them in the Cognitive Engine.
Depending on how we will calibrate the system, it will use a set of previous
path performance information (delay, jitter, packet loss rate, and bandwidth)
to predict future value of this information.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [25] of [41]

Methodology Methodology to obtain experimental data:

Obtaining measurements data for performing the experiment is the most
difficult part of the case. It is rather easy to collect data for the delay (the
RIPE Test Traffic Measurement (TTM) Service data set looks like being a
good candidate). See: http://www.ripe.net/projects/ttm/

Unfortunately, it is going to be much more difficult for the bandwidth. In
particular if we want (and, at some point, we will want to) both bandwidth and
delay at the same time for the same destination. Therefore, time series are of
high interest for us.

Experimental data processing methodology and analysis:

Data processing and analysis will be two fold. First, every component will be
evaluated alone as unitary tests. Once validated, the components will be
ported to IDIPS and tested with emulated (Emulation Validation) traffic and
real traffic (Internet Validation).

5.1.2. Use Case Scenario 2

Use case scenario description
Title Delay estimations, delay-based path selection and routing
Technical objective Experimentation of Technical Objective 2 (B1: Path availability/IDIPS).

By observing the behavior (precision, oscillations) of a Virtual Coordinate
System deployed in every IDIPS server, Machine Learning is used to detect
potential routing shortcuts, and thereby improve the diversity and ranking of
paths of high quality.

Participant(s) This scenario will be performed by ULG.

Content
Short description IDIPS servers run an Internet Coordinate System (ICS) and thereby

measure some Round Trip Times (RTT) between them. These RTT
measures are used by IDIPS servers to infer their coordinates, which in turn
are used to estimate other unmeasured RTTs between them.

We will evaluate whether observations of the dynamical behavior of this ICS
(e.g. values and variations of delay estimation errors) allow IDIPS servers to
find the best paths in terms of delays.

Expected results We expect to show that the observations of the ICS (and the associated
learned model) allow to detect with high confidence when there exists a
routing shortcut between IDIPS servers, and then to narrow the search for
relay servers leading to lower delay paths.

Experimentation
Evaluation criteria and
metrics

We will evaluate the success rate of the machine-learned models to detect
the presence of shortcuts and to narrow the search for interesting indirect
paths.

Experimental scenario:
description, tools,
configuration and
running conditions

Experimental scenario description:

The experimental scenario consists in deploying IDIPS servers that run an
Internet Coordinate System (ICS).

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [26] of [41]

Realistic experimental scenario requires a large number of nodes
representing IDIPS servers. For this purpose, at least a few hundreds
should be considered but preferably one thousand would be required for the
purposes of our experimental scenario. This can be seen as the deployment
of a large peer-to-peer network.

Experimental tools:

An IDIPS server provides tools to measure path characteristics to lots of
(possibly all) remote locators/prefixes. Beside IDIPS servers no dedicated
tools are foreseen.

The generated traffic will be modest, basically some ICMP echo request
between nodes, each node pinging a few tens of neighbors. Henceforth, no
dedicated traffic generator tool will be used.

Experimental configuration and running conditions:

IDIPS-equipped nodes should be geographically distributed, or some
suitable delay emulators should be used between these nodes in case
servers are physically co-located - the ILAB-T experimental facility allows
emulation of configurable delay between nodes.

Our experimental setup does not require to replay data traffic traces. The
experimental setup does not require any special hardware, or specific tool.

Experimental execution and measurements:

We will measure RTTs by using active probing. The IDIPS servers
themselves perform data collection.

Methodology Methodology to obtain experimental data:

The methodology relies on the deployment of nodes as a peer-to-peer
system. Experiments will last a few hours.

Experimental data processing methodology and analysis:

From the raw delay measurements, each IDIPS-equipped node will extract
several metrics, such as:
− RTTs (min, mean, max, standard deviation, etc.)
− Coordinates (precision, stability, drift, etc.)

A Machine Learning module is used to detect presence of shortcuts (better
paths in terms of delay between IDIPS servers). The quality of the paths
found will be evaluated, including the false positive rate, and the delay gain
(absolute and relative) of these indirect paths.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [27] of [41]

6. Accountability
6.1. Profiling and Accountability

This section describes the experimental plans and scenarios, including validation techniques and
methodologies, for the technical objective (b3)-profile-based accountability. It is divided in three sections,
where the first two sections describe the use case, objectives and expected results. The third section
zooms in the experimentation, describing the scenarios, methodologies and evaluation criterions. It also
includes the architecture of the profile-based accountability engine and the positioning toward other use
cases.

Use case scenario description
Title Profile-based Accountability Experimental Framework
Technical objective The objective of this use case is to define new ways to implement Fair Usage

Policies (FUP). FUP regulates the way users are allowed to use network
resources, which is in fact the binding contract subscribers have not only with
their Internet Service Provider (ISP) but also, in a broader sense, to the
collative networks that compose the Internet. At present, the mechanism in
place for FUP is the maximum access speed, for example a typical DSL
12Mbps downstream with a 400kbps upstream capability. Depending on the
country, some operators also cap the total volume consumed by the
subscribers, such as 25 gigabytes per month. They penalize transgression by
dropping the maximum access speed to, for example, 64 kbps for the
remaining of the month. It is clear that these are very limiting capability for
operators to control the fairness of use in their network.

Technically, the goals of this use case is to define new ways to determine
and impose network accountability and control, so that operators can have
their network resources fairly allocated amongst their users. It is important to
notice that in this context fairness does not imply in “equal allocation for
everybody”, but rather a respect the binding contract between the operator
and the subscriber. Machine learning is expected to be used to define
profiles (which will be associated to a FUP), and to monitor and control
subscribers according to the assigned profiles.

Participant(s) This scenario will be performed by Alcatel-Lucent Bell (ALB) and under the
technical responsibility of Ing-Jyh Tsang (ALB) with the help of Werner Van
Leekwijck (ALB), Wouter Rogiest (ALB), and Koen De Schepper (ALB).

Results of the experimental use case (a1), referring to adaptive traffic
sampling will directly contribute to network characterization for profile-based
accountability. Chadi Barakat (INRIA), Amir Krifa (INRIA), Imed Lassoued
(INRIA), Giovanni Neglia (INRIA).

In addition, machine learning technical objectives will directly contribute to
the experimental scenarios. Thus, we foresee additional cooperation with the
experts in machine learning amongst the ECODE partners. Pierre Geurts
(ULG), Louis Wehenkel (ULG), Juan Pablo Narino Mendoza (UCL), and
Pierre Dupont (UCL).

Content
Short description Profile-based accountability requires a proper definition of who is accountable

and for what, which were introduced in D2.1-“Cognitive Engine -
Experimental Network and System Architecture”. Hence, subscribers are
accountable for their usage and on the available network resources. Profiles

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [28] of [41]

should characterize a traffic pattern/behavior, correlating the end-user
conduct and the effects of such traffic pattern in the network. Consequently,
profiles should reveal certain characteristics of the subscribers’ usage,
interaction, and impact on the network.

There are two main tasks required by the system, first to define the profiles
and second to classify subscribers according to profiles. The inputs for the
system consist of measurements from the subscribers’ network traffic flow [1,
2, 3]. The measurements will be sampled from data gathered during time-
sliced intervals. In addition, elements of the data can be divided in two parts:
one that conveys the information of the user network demand, and a second
that relates information from the state of the network load. This opens the
possibility of including measurements from different network elements to be
associated with the subscribers’ traffic flow. For both profile definition and
profile classification, the initial step, requires data sampling and pre-
processing, which consists in getting raw data and perform feature selection
and extraction. The raw data are packet traces from a network element,
which can be obtained and processed in real-time or in batch-mode. The
dataset will be used to extract measurements, and constitute the input data
for the machine-learning algorithm. This input data can be mathematically
defined as a set of vectors with d-elements, each representing a feature
measured from the raw data, e.g.),,,(21 dvvvV L= .

For the profile definition task, a learning dataset will be used for training the
machine-learning algorithm. The main objective is to define profiles that
characterize subscribers, however there are different ways to achieve this.
For instance, the input data can be used to feed a machine-learning
algorithm, which is designed to categorize subscribers in different profiles
directly from the input vectors. Alternatively, a two-step approach can be
taken and the input data can be used to characterize subscribers’ action or
their network behavior during sliced intervals. The results from this
classification can be used to feed another learning system to create the final
subscriber profile classes. For the classification problem, a test dataset will
be used to validate the learned system. Depending on the machine-learning
algorithm used for the learning phase, the input vectors will classify a
subscriber as belonging to one of the possible profiles derived from the
learning phase.

Expected results It is expected that machine-learning techniques will produce a system
capable of imposing network accountability based on profiles, whereas the
definition of profiles was given in the previous sections. The ultimate goal is
to achieve a system that controls the network resource allocation amongst
the users of the Internet in a fairer way. Again, the term fair does not intent to
mean equal distribution for all the users, but rather maximization of the use of
the network resource, in respect to the contract in which subscribers have
with their operator.

It is expected that based on the network traffic and machine-learning
techniques, a learning system will define profiles. Those profiles will enable
the differentiation of subscribers in respect to classes of network resource
consumption. Finally, a system capable of monitoring and controlling
subscribers’ interaction and network demand will be created to impose
network accountability.

Experimentation
Evaluation criteria and
metrics

The evaluation criteria and metrics used will depend on the nature of the
experimental case, i.e. batch-mode or real-time. In addition, the type of
machine-learning technique will also play a role. There are many techniques
in consideration for cross-validation, such as the k - fold cross-validation or

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [29] of [41]

bootstrap technique. Moreover, different metrics such as Euclidian or
Mahalanobis might be applied, in case clustering techniques are used for
profile classification [4,5,6].

Note: at this point, the specific techniques and metrics to evaluate the system
are not closed defined. A formal definition will be included with the first results
of the experimentations.

Experimental scenario:
description, tools,
configuration and
running conditions

Experimental scenario description:

The experimental scenario is divided in two phases one based on an off-line,
centralized, batch-mode machine-learning algorithm and the other using
distributed, real-time machine-learning algorithms. This division reflects the
challenges and a stepwise approach towards the resolution of the objectives
laid out by the profile-based accountability problem.

Scenario 1: This is an initial scenario to allow experimentation on solutions
for the challenger posed by profile-based accountability. Using an off-line,
centralized, batch-mode system, will allow us to focus on the task of defining
and classifying profiles. This will be based on traffic traces, gathered from a
network element during a specific time interval. For example, a one-hour
traffic trace from an aggregated node.

Scenario 2: This scenario moves the experimental objectives closer to the
application on a real network. The assumption is that the first phase will solve
issues related to understanding the nature of the data, adaptive sampling,
feature extraction, and network traffic patterns. The focus in this phase will be
on perfecting the distributed, real-time machine-learning algorithms as a
solution for the profile-based accountability task.

Experimental tools:

The following hardware, software and network system will be used for these
scenarios.

Network (1 L3 Gigabit Ethernet Switch):

− 24 triple speed ports
− 20 RJ-45 connectors configurable to 10/100/1000 Base-T
− 4 MiniGBIC combo ports (port 21 - 24)
− 2 10Gig stacking ports
− 2 build-in 10 Gig ports
− Capacity: 64Gbps Full Duplex or 128Gbps
− Throughput: 65.5 Mbps

Hardware (4 Rack Servers 2U):
− 2 x Quad-core Intel Xeon E5430 2.6 GH with 12 MB cache
− 32 GB DDR2-667 registered ECC (16 DIMMs)
− 4 x Seagate 300 GB SAS drive with 15,000 rpm
− 4 x RJ45, PCI-e Intel® PRO/1000 PT Ethernet Server Adapter

Software (Open Sources):
− Linux CentOS
− Gnu C/C++ compiler

Experimental configuration and running conditions:

Scenario 1: Figure 1 depicts different network elements, and position which
data traffic could be gathered. The figure also indicates some particularity of
the different location, for example traffic through the edge server loses the
intra-autonomous system user-to-user flows. This scenario assumes that a
raw dataset is collected from an aggregate node. In an off-line mode,
individual subscribers’ traffic is discerned, data feature are extracted, and

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [30] of [41]

pre-processed. The dataset is then split into learning and test data. This
experimental scenario looks to evaluate several different techniques for data
filtering, feature extraction and data reduction, together with different
machine-learning techniques [9]. It is important to note that machine-learning
algorithms used in this phase many not be easily used in the next scenario.
The challenges of mapping a centralized, batch-mode machine learning
algorithm to a distributed, real-time environment is no trivial and constitutes a
well-known challenge in the machine-learning community [7,8]. However,
data filtering, feature extract and data reduction techniques used in this
phase will be very useful for the next phase. In this way, an efficient system
can be better achieved in the next experimental scenario.

 Figure 1 Possible network elements where data can be extracted for experimentation.

The computational resources required for this experimental scenario is
limited. It is assumed that the raw data will come from an aggregated node
from a real network. Once the raw data is available, a single server will be
sufficient to perform the different steps required by this experimentation.

Scenario 2: The PBA-engine will operate in two levels, a learning domain
and a classification domain, both operating concurrently and interacting with
each other. While the learning stage will be responsible to keep the profile
definition up to date with respect to the evolving subscribers network traffic
behavior, the classification stage produces a real-time monitoring system,
cross-checking and classifying in which profile each is operating and being
precise enough to give a measurement on the profile deviation.

Figure 2 shows an ideal network configuration including the profile-based
accountability (PBA)-engine, which is in the access node. The access node is
the first element inside the operators’ network where subscribers’ traffic could
be monitored. If a PBA-engine resides in the line card, no subscribers’ traffic
filtering is necessary. Furthermore, scalability issues in term of computational
resources have only limited impact, because a limited numbers of subscribers
are connected to each access node.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [31] of [41]

 Figure 2 Diagram of an ideal configuration where PBA-engine resides in access node.

This experimental scenario will use four servers to simulate a real network
environment. It is assumed that the raw data will come from different
aggregated node from a real network. Each node will host the distributed
PBA-engine and contain separate learning and test datasets.

Experimental execution and measurements:

In both scenarios, the raw data set is collected and traffic is pre-processed
and data feature extracted. A representative data set is then split into learning
and test data. Several different data sets can be produced depending on the
cross-validation technique used [7,8]. A machine-learning algorithm is applied
on the learning i.e. training data, and a test dataset is used at classification
stage to evaluate the performance of the system. An overall evaluation of the
system has to be engineered, so that we will be able to scientifically assert
and verify that the profile-based accountability goals are met.

Figure 3 Dataset split for the cross-validation schemes.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [32] of [41]

Methodology Methodology to obtain experimental data:

The experimental dataset can be extracted from an aggregated node from a
real life network. This can be obtained directed from networks that ECODE
consortium has access or through known databases such as the DatCatSM.
The initial experimentation will be done as an off-line experiment, with the
possibility of simulation of a real-time environment. In case of direct access to
a real life network, where issues such as of the requirement of anonymization
are solved, the data will be directly extracted from the network, using
techniques from case a1, and processed in real-time.

Experimental data processing methodology and analysis:

The initial data collection block, represent a very important phase, which
includes data processing and analysis. The objective of this step is to perform
feature selection and extraction from the raw dataset. This will lead to a
uniform feature set that can be used for the machine-learning phase. The
elements of the feature vectors can be divided in two parts, one that conveys
information of the user network demand and another that relates information
from the state of the network load. This opens the possibility of including
measurements from different network elements to be associated with
subscribers’ traffic flow (see Figure 4). Example of measurable are: number
of flows, packet size and packet inter-arrival time statistics (average,
deviation, minimum, maximum, quartiles), byte count, connection duration,
the aggregated number of flows, aggregated packet size and inter-arrival time
statistic at the network element, etc.

Feature vectors are defined as),,,(21 dvvvV L= , where each component
cv determines a measurement referent to some properties calculated during

a certain time-slice from a subscriber. The elements of the vector cv can be
related to the subscribers’ traffic demand or it can capture information over
the resource allocation at the network side.

Figure 4 Diagram depicting a subscriber traffic flow (green arrow) and the network
elements the traffic flow passes. The dataset represented by vectors V with possibility

of contain features from subscriber and different network nodes

Figure 4 shows a network diagram, which will help in understanding the
definition of the feature vectors. Assuming that a subscriber is served by the
access node A and have traffic flow from the green arrow. A feature vector

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [33] of [41]

),,,,,(1221 ddd nnnssV
−−

= L will be composed of elements describing the
subscribers’ traffic and the features characterizing the load on the network
node. This definition can be extended to add features characterizing network
resource allocation from other network nodes that is part of traffic flows.
Thus,),,,,,,,,(121221 dddccc nnnnnnssV

−−−−
= LL , where the

s elements represent features from the subscriber side, and the n elements
from network nodes, such as node A, B and C in Figure 4. A data set
containing a representative number of V will used as the input of an
unsupervised machine-learning algorithm. The results would define the
number of profiles (clusters) according to a certain distance measure.
Alternatively, if some small set of V could be labeled such as belonging to a
certain profile (defined a priori), a semi-supervised or supervised algorithm
can be used to learn the profiles from the data set.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [34] of [41]

7. Observation and Analysis Grid

This section provides an analysis of the experimental tools that will be used in each experiment
and methodology that will be conducted for each experiment in order to facilitate interpretation
of the obtained results and enable systematic re-production of results.

8.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [35] of [41]

9. Conclusion

Conclusions will be provided in the next release of this document.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [36] of [41]

10. Annex.1: Template

Use case scenario description
Title A meaningful title for the use case experimentation
Technical objective Which technical objective will be experimented in this scenario ?

Which performance improvement is expected by the use of machine
learning ?

Participant(s) Indicate who will be performing this scenario and whether they would prefer
or need to interact with other partners for accomplishing this scenario.

Content
Short description What do you plan to evaluate in more detail than the title and less detail

than the remainder (experimental scenario)
Expected result(s) What do you expect to find as results ?

Why would this be the case ?

Experimentation
Evaluation criteria and
metrics

Describe the experimental evaluation criteria, and metrics.

Experimental scenario:
description, tools,
configuration and
running conditions

Experimental scenario description:

Provide as precisely as possible the experimental scenario to be emulated.
For example: What is the topology of the emulated scenario ? Indicate the
number of PCs/hosts, network nodes and which configuration is necessary
for running this experiment (OS, emulation tool, experiment tools, etc.).
Indicate the interconnection schema. Give all characteristics of links and
network devices in terms of delays, loss rates: indicate any model.

Experimental tools:

Do you need specific measurement tools, hardware, equipments ? Are
these tools available without additional development or use of these tools
require specific development for the purpose of this experiment ?

Experimental configuration and running conditions:

What are the background traffic and events to be emulated during the
experiment ? What are their characteristics ? Is there a model to describe
them and a tool for generating them ? Are there traces to replay ? Where to
put monitoring, measurement or traffic capture tools/ equipments?

Experimental execution and measurements:

What are the requirements in terms of measurement ? What kind of
measurements (active, passive, sampled, etc.)? What parameters to
measure/estimate ?

Methodology Methodology to obtain experimental data:

Flowchart of the experimental scenario with the functional blocks indicated.

Provide an indicative description of the experimentation running time (per

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [37] of [41]

step if possible).

Experimental data processing methodology and analysis:

Describe here the methodology for processing and comparing the
experimental data (e.g. against reference scenario).

Provide detailed description of the analysis to be performed on the obtained
data (including sensitivity analysis). - Note in case data analysis requires
use of a specific tool please indicate which tool.

11.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [38] of [41]

12. Annex.2: ILab-T Experimental Facility

The iLAB virtual wall, experimental facility at IBBT, will be available to the project experimenters
to execute the tasks associated to the experimental phases 1 and 2. This experimental
emulation facility consists out of 100 servers connected through a non-blocking Ethernet switch.
The 100 high-end servers composing the experimental facility cluster come each with dual CPU
dual core 2.0GHz, 4GB RAM, 4 or 6 Ethernet network interface cards (Gb/s) – PCI express, and
4x80GB disks – software RAID 0 configuration. The servers are interconnected by a Force10
E1200 non-blocking Ethernet switch (1.68 Tb/s – 1Billion pps) that scales up to 672 ports. Each
server is connected with 4 or 6 gigabit Ethernet links to the switch.

Remote access to the iLAB control system is possible without any restriction on functionality. As
such, large dedicated experimental setup can be built very fast using the Emulab control
software (see Section 1.3.2.2). Advantages are the repeatability and the possibility of dedicated
experiments within confined environment where experimental parameters can be controlled.
Disadvantages are the complete isolation and lack of real Internet connectivity for the
experiments.

This experimental facility will be used as follows (however other scenarios are also possible and
will be developed during the project time period):

• Large number of nodes for use in control plane experiments: e.g. after a simulation step,
real code could be tested in a control plane emulation. Some of the nodes can even be
connected to real network elements;

• Each node is fully dedicated and under full control of one experiment, so the users can
test all kind of operating system images, configurations. As such, the good properties of
Emulab (dedication and control) and PlanetLab/OneLab (distribution) are merged;

• Some of the nodes may be used for network emulation (bandwidth, delay, packet loss)
in order to make the experiments with data traffic between servers and clients realistic;

• Moreover, it is also possible to connect special hardware (storage networks and storage
clusters, traffic generators, real network elements, etc.) to the emulation clusters.
Therefore, Gb Ethernet or even 10Gb Ethernet ports can be used on the force 10 switch.
iLAB has also a good connectivity (1Gbps) to BELNET, the Belgian NREN, with both
IPv4 and IPv6 connectivity.

The main advantage of such an experimental facility within this project is the relatively large
experimental setup (100 nodes, but even more if virtualization is considered), which can be
used in a dedicated mode. As such, the experimenters have full control of dedicated nodes and
the performance experiments can be performed in a repeatable way.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [39] of [41]

13. Annex.3: Experimental Tools

This Annex describes experimental tools outlined in the main sections of this document:

1. XORP (eXtensible Open Router Platform)

XORP (http://www.xorp.org) is the industry's only extensible open source routing platform. It is
in broad use worldwide, with thousands of downloads by companies and educational institutions
and an active international developer community. Designed from the start for extensibility,
XORP provides a fully featured platform that implement IPv4 and IPv6 routing protocols (such
as BGP and OSPFv2) and a unified platform to configure them. It is the only open source
platform to offer integrated multicast capability (such as PIM-SM and MLD). XORP's modular
architecture allows rapid introduction of new protocols, features and functionality, including
support for custom hardware and software forwarding. XORP is available for free download
under a BSD-style license.

The ECODE project will use XORP as the experimental routing platform for three main reasons.
First, XORP is a high-quality and recent implementation of the main routing protocols that
combined with Click or operating systems is used to build real routers. Second, several of the
partners are experienced with development on XORP. Third, in contrast with Quagga/Zebra or
other commercial router platforms, XORP is distributed under a BSD-style license. This implies
that both research labs can easily obtain and modify its code but also that industry will be able
to build products more easily from this code base than from a code based distributed under a
GPL license.

2. Emulab

The University of Utah has developed Emulab (www.emulab.net), which is control software for a
very flexible emulation experimental facility based on servers, which can run a variety of
operating system images and can be interconnected dynamically in topologies as needed for
the experiments. In this setup, network links (bandwidth, delay) can be emulated through
software. This software has been developed for controlling local PC clusters. The software
makes it possible to do automatic and remote configuration, by swapping in and out operating
system images. As such, large dedicated experimental facility can be built very fast.

The Emulab software is used to control the iLAB virtual wall experimental facility. It makes
possible to fully control the servers and the interconnecting network. As such, it installs the
desired operating system image on each server and configures the Ethernet switch with the
right VLAN configuration. The Emulab software itself cannot perform experiments on its own. It
also incorporates multiple users, a web interface and an archive for experiment setups.
However, the users still need to define and execute their experiments once the iLAB virtual wall
is configured and the user has access.

The Emulab software provides the following features to the user (reasons for using it in the
context of the ECODE project):

• Web-based interface with dedicated user accounts;
• The user can graphically draw a testbed with nodes and interconnections (or provide this

through an NS2 configuration file);
• The user can select an OS image (Linux, BSD, Microsoft Windows) for each node;
• After the user confirms: all nodes are installed and the necessary interconnections are

made;
• After this, the user has full root access to the nodes for executing the experiments;

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [40] of [41]

• Afterwards, the testbed is swapped out again, but available for future experiments with
the same setup. As such, the nodes can be reused by another user;

• Nodes are installed in parallel in a very fast way (couple of minutes).

3. Measurement equipments to set-up on the experimental emulation platform

Measuring and monitoring network traffic and performance is a key objective of ECODE for
assessing the cognitive router. Several measurement and monitoring equipments and
methodologies exist. They can range from technical solutions based on dedicated hardware to
generic software tools.

In terms of accuracy, using dedicated devices for tapping the link (to get traffic traces) and
measuring performances online is certainly the best solution, despite it is also the most
expensive solution. The most famous and commonly used monitoring device is the DAG card
from ENDACE located in Waikato, New Zealand. This card aims at transparently tapping the
link for capturing packets or packet headers, adding a very accurate timestamp for each of
them, and either storing it on a large hard drive for future analysis, or applying a particular
computing for analyzing the traffic online. The transparency is reached thanks to a well-
provisioned machine with fast memory, fast busses, fast and large hard drives. Clock accuracy
is enforced by using a GPS system and its PPS (Pulses Per Second) signal, which makes
possible to avoid clock drift and to reach a perfect synchronization of the clocks of all monitoring
equipments. Several other capture cards exist, but the DAG card is dominating the market, and
as such, benefits from a large set of analysis and conversion tools.

On the other side, software tools for network measurements and monitoring exist. Their
advantages are their genericity and their low price. On the other side, they lack from accuracy,
and are not able to perform as well as DAG cards on high-speed links. Most known and used
tools are based on the libpcap library (as Ethereal or Wireshark, for instance). Such inexpensive
solution can fit technical measurement requirements for traffic having throughputs less than few
hundreds of megabits per second, in case the tapping machine is powerful enough and
equipped with a well performing network adapter. The synchronization using Network Time
Protocol (NTP) can also fit when running on LANs. In addition, the library of existing tools is
quite large. Obviously, such software solution does not integrate a bypass system and is thus
less transparent than a DAG system. On a platform like ILAB, shared between many users, this
can be damageable by introducing some performances decreases when experiments use
monitored links.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable D3.1, page [41] of [41]

14. References

[1] Lili Yang; Michailidis, G., "Sampled Based Estimation of Network Traffic Flow

Characteristics," INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE , vol., no., pp.1775-1783, 6-12 May 2007

[2] Crotti, M.; Gringoli, F.; Pelosato, P.; Salgarelli, L., "A statistical approach to IP-level
classification of network traffic," Communications, 2006. ICC '06. IEEE International
Conference on , vol.1, no., pp.170-176, June 2006T.

[3] Sung-Don Joo, Chae-Woo Lee and Yeon Hwa Chung , “ Analysis and Modeling of Traffic
from Residential High Speed Internet Subscribers LNCS 3090, pp. 410-419, Springer
Berlin / Heidelberg 2004.

[4] Xiang, S., Nie, F., and Zhang, C. 2008. “Learning a Mahalanobis distance metric for data
clustering and classification”. Pattern Recogn. 41, 12 (Dec. 2008), 3600-3612.

[5] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit Dhillon. Information-
theoretic metric learning. Proc. 24th International Conference on Machine Learning, 2007.

[6] Liu Yang, Distance Metric Learning: A Comprehensive Survey, Tech Report, Carnegie
Mellon University. May 2006.

[7] Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney, "Integrating Constraints and
Metric Learning in Semi-Supervised Clustering", in Proc. of ICML-2004, pp. 81-88, Banff,
Canada, July 2004.

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning, Springer, 2006
[9] Ethem Alpaydin. Introduction to Machine Learning, MIT press, 2004.
[10] Huan Liu, Hiroshi Motoda. Computational Methods of Feature Selection, CRC Press,

2008

